
Rclub Solutions for exercise 1
Matt Boone

October 8, 2015

First off I want to remind everyone that there is more than one way to get at a problem, this is just one way
to answer the question. I look forward to y’all posting your own answers!

Easy

Say you have a data set where you measured percent canopy cover at certain points. However, at a few points
you could not get a value because they were actually in the middle of a pond.

data1<-data.frame(id=1:10, perCover=c(0.1,0.5,NA, 0.4,0.3,NA,1,0.9,0.7,0.7))
data1

id perCover
1 1 0.1
2 2 0.5
3 3 NA
4 4 0.4
5 5 0.3
6 6 NA
7 7 1.0
8 8 0.9
9 9 0.7
10 10 0.7

How would you calculate the average canopy cover?

Solution

This is easiest done by just using the mean function, with one caveat, if we ran this on the current data set it
would fail:

mean(data1$perCover)

[1] NA

That’s why we need to add the agrument na.rm=T, so it will remove NAs before calculating.

mean(data1$perCover, na.rm=T)

[1] 0.575

You can see other arguements for functions by looking at the help page in Rstudio and searching the function.
Or typing:

?mean

1

Medium

Say you have acquired a long term data set from a banding site. Unsurprisingly, your data is riddled with
NA’s as there was no standard protocol across years.

data2<-matrix(1:50,10,5)
data2[sample.int(50,7)]<-NA
colnames(data2) <- c('id','tarsus','culmen','wingchord','tail')
data2

id tarsus culmen wingchord tail
[1,] 1 NA NA 31 NA
[2,] 2 12 22 32 42
[3,] 3 13 23 NA 43
[4,] 4 14 24 34 44
[5,] 5 15 25 35 45
[6,] 6 16 26 36 NA
[7,] 7 17 27 37 47
[8,] 8 18 28 38 48
[9,] 9 19 29 39 NA
[10,] 10 NA 30 40 50

You want to take the mean of each column. How do you do this? How would you do this without taking the
mean of the ID column?

Solution:

To answer this question we’re going to use the apply function since we want to take the mean of multiple
columns. An apply allows us to apply a function either across the rows or down each column seperately. We
have to tell it whether we want to run it down the runs or columns by entering either 1 or 2 in the second
position. 1 means we want it to run across the rows, and 2 means we want it to run down the columns. So
for this problem we’d type:

apply(data2, 2, mean, na.rm=T)

Where 2 tells it we want to run the function ‘mean’ down the columns of our data set data2. We then give it
any extra arguments the function may need after the first 3 arguments we supplied.

apply(data2, 2, mean, na.rm=T)

id tarsus culmen wingchord tail
5.50000 15.50000 26.00000 35.77778 45.57143

To only take the mean of the columns not called ‘id’ we have to tell it which columns aren’t called ‘id’

colnames(data2)!='id'

[1] FALSE TRUE TRUE TRUE TRUE

And then feed this back to our dataframes column. Notice we are adding this statement after the comma,
because to the left of the comma selects rows, and to the right selects columns. We now can do the same
apply statement as before

2

apply(data2[,colnames(data2)!='id'], 2 , mean, na.rm=T)

tarsus culmen wingchord tail
15.50000 26.00000 35.77778 45.57143

Not we could just type data2[,-1] to take out the first column if we knew that the first column is always the
id column. In this case the ‘-’ sign followed by a number will show us all columns but that column

Hard

Say you have a data set where you measured the temperature at different minutes. You coded time as a
decimal hour (in 24 hour format). Heres your data

data3<-data.frame(temp=c(32,32.1,32.4,32.4,32.5,32.8,33,32.9),
dhour=c(22.5,22.75,22.86,22.95,22.98,23.05,23.10,23.18))

data3

temp dhour
1 32.0 22.50
2 32.1 22.75
3 32.4 22.86
4 32.4 22.95
5 32.5 22.98
6 32.8 23.05
7 33.0 23.10
8 32.9 23.18

You want to know approximately what the temperature was at 11pm (23.0 decimal hours) by picking the
temperature at the closest time to 23.0.

Extra: How can you interpolate to this time point? You can use whatever interpolation method you want.

Solution:

I expect people have come up with different answers for this problem. My solution is

data3$temp[which.min(abs(data3$dhour - 23))]

[1] 32.5

When I create a solution for a problem I code inside -> out as that’s how R is going to evaluate the
expression.

So first I think of the simplest form of this problem. We need to know what number is closest to 23 and
choose that number. So simple subtraction should work.

3

data3$dhour-23

[1] -0.50 -0.25 -0.14 -0.05 -0.02 0.05 0.10 0.18

However we notice that subtraction could give us a positive or negative value, we just want the closest value.
So we need to take the absolute value of these numbers

abs(data3$dhour-23)

[1] 0.50 0.25 0.14 0.05 0.02 0.05 0.10 0.18

Now we just need to choose which is the smallest value. This can be done in many ways. Some people might
want to sort the numbers and choose the first value, though then we’d have to make sure the position of the
vector is followed throughout the process. I choose to use min, specifically a which.min which is going to tell
me which position in our vector has the smallest value:

which.min(abs(data3$dhour-23))

[1] 5

Now that we have the position, we can feed it back to our temperature column to get the answer:

data3$temp[which.min(abs(data3$dhour-23))]

[1] 32.5

For the bonus section, I’m going to describe less of how I figured out the probem, as it was more of an
exploratory problem for everyone to work on.

I decided to use predict, as I had never explored the prediction side of R. In this case, we can feed it a model
(any model) and then have it use that model to predict a point. Since our data is sort of linear.

4

22.5 22.6 22.7 22.8 22.9 23.0 23.1 23.2

32
.0

32
.2

32
.4

32
.6

32
.8

33
.0

dhour

te
m

p

The syntax of predict is a bit strange though. We first feed it our model, which can be either an object we
stored our model as, or just the model itself. But then we have to feed it new data under the argument
‘newdata’ this data needs to be a dataframe with the column name of our x variable. In this solution we only
have 1 point so it looks funny

model1<-lm(temp ~ dhour, data=data3)
predict(model1, newdata=data.frame(dhour=23))

1
32.63502

But we can do this with an entirely new data set

predict(model1, newdata=data.frame(dhour=21:24))

1 2 3 4
29.52334 31.07918 32.63502 34.19086

You should note this is also how we add the predicted line to a map (in base plot)

plot(temp ~ dhour, data=data3)
lines(x=data3$dhour, predict(model1), type='l')

5

22.5 22.6 22.7 22.8 22.9 23.0 23.1 23.2

32
.0

32
.2

32
.4

32
.6

32
.8

33
.0

dhour

te
m

p

Though this might go to show you how a linear fit might not have been the best. Another idea I thought of
is using a spline interpolation. In this case the argument ‘xout’ will tell it what point to interpolate to.

predic_sp<-spline(data3$temp ~ data3$dhour,xout=23)
predic_sp

$x
[1] 23
##
$y
[1] 32.5816

spline1<-spline(data3$temp ~ data3$dhour, n=100)

plot(spline1, xlab='dhour', ylab='temperature')
points(temp ~ dhour, data=data3, col='red')
abline(v=predic_sp$x, h=predic_sp$y)

6

22.5 22.6 22.7 22.8 22.9 23.0 23.1 23.2

31
.8

32
.2

32
.6

33
.0

dhour

te
m

pe
ra

tu
re

In this graph, the red dots are our real values, black are interpolated values, and the cross is the value of our
interpolation at 23.

I just like splines, they’re fun.

7

	Easy
	Solution
	Medium
	Solution:
	Hard
	Solution:

