
Practice exercise2
Matt Boone

October 13, 2015

We’re back again, time for your weekly practice, practice, practice. Again, there’s more than one way to do
anything in R (as we’ve seen in our dplyr lesson taught by Des). Work your way as far down as you can go
before you start struggling. DONT GIVE UP. If things get too hard, feel free to google or check the help
files for various functions. R is about googling as much as anything else!

Today we focus on subsetting otherwise known as taking a data set and filtering it to our choosing. There’s
many different ways to do this

Easy

I want to buy a car. Say we have a data set of cars and their various performance statistics. Hey wait we do
have that, it comes free with R! Its called the ‘mtcars’ data set. It’s automatically loaded when you type in
‘mtcars’

Now say I want to use this data set to help me decide what car to buy. I want to subset this list so I can see
the 6 cylinder cars (cyl), but I’m only interested in seeing each cars horsepower (hp) and miles per gallon
(mpg). Subset the ‘mtcars’ data set so I only have 6 cylinder cars and only the two columns ‘hp’ and ‘mpg’

head(mtcars)

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

Solution

I’m going to use the subset function, which is fairly straight forward

subset(mtcars, cyl==6, select=c(hp, mpg))

hp mpg
Mazda RX4 110 21.0
Mazda RX4 Wag 110 21.0
Hornet 4 Drive 110 21.4
Valiant 105 18.1
Merc 280 123 19.2
Merc 280C 123 17.8
Ferrari Dino 175 19.7

but we can do it without functions:

1

mtcars[mtcars$cyl==6 , c('hp','mpg')]

hp mpg
Mazda RX4 110 21.0
Mazda RX4 Wag 110 21.0
Hornet 4 Drive 110 21.4
Valiant 105 18.1
Merc 280 123 19.2
Merc 280C 123 17.8
Ferrari Dino 175 19.7

We also can do this using dplyr!

###we have to add the row names as its own column first
mtcars$name <- row.names(mtcars)
mtcars %>% filter(cyl==6) %>% select(name,hp,mpg)

name hp mpg
1 Mazda RX4 110 21.0
2 Mazda RX4 Wag 110 21.0
3 Hornet 4 Drive 110 21.4
4 Valiant 105 18.1
5 Merc 280 123 19.2
6 Merc 280C 123 17.8
7 Ferrari Dino 175 19.7

Medium

Now I’m a picky person and I have a lot of needs and wants. What I really want is a car that satisfys these 4
critera.

1. I do not want a heavy car (‘wt’ is less than 4kg)
2. I want a 4 or a 6 cylinder engine (‘cyl’ means cylinder)
3. I want it to get atleast 20 miles to the gallon (‘mpg’)
4. Because I am a scientist, I want the car that has the highest value of this metric I call the ‘awesome’

metric, which is obviously:

mpgˆ(hp) /((10wt)ˆ(20 cyl))

At the end I want it to only show me the car that fits all of these criteria. Subset the data set so it shows
me what car I’m going to buy.

Solution

Just like before, we’ll use subset first, but be mindful of your parenthesis, R will read this whole statement as
is

2

final <- subset(mtcars, wt<4 & (cyl==4|cyl==6) & mpg >=20)

To calculate our awesome metric I’m going to go a step up and use the ‘with’ function, it works similar to
‘mutuate’ in dyplr and lets us to do something to a data set without actually messing with the original data
set. You first give it the data.frame, then within the {} you tell it what you want to do inside that dataset.
Here we’re going to calculate our awesome metric. The great thing about doing it this way is we don’t have
to say

final$awesome <- final$mpgˆ final$hp . . . etc

awesome <- with(final , {
mpg^(hp) /((10*wt)^(20*cyl))
})

Finally we’re going to use the which.max function, which tells us the position of which number is the highest
of our awesome vector (as opposed to max which gives us the actual value)

final[which.max(awesome),]

mpg cyl disp hp drat wt qsec vs am gear carb
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2
name
Lotus Europa Lotus Europa

Bonus (Medium-Hard difficulty): I want a Mercedes (the ‘Merc’ means Mercedes) and instead of my
awesome metric I want the highest horsepower possible (‘hp’). In this situation I want my final dataframe
to only contain ONE row, my wining entry. So you must choose the name ‘Merc’ as well, WITHOUT
manually typing in the number of the row for the Mercedes!

Solution This problem might be harder for people than I anticipated. I’m hoping that through google y’all
have found the function ‘grep’ and ‘grepl’. These search using something we call regularExpressions which is
a way for codes to ‘search’ through character strings for something of interest. This example is pretty straight
forward as we’re only looking for the phrase ‘merc’ in each row.name. ‘grepl’ shows us the positions of a
vector that match, ‘grep’ shows us the value. So we want to use grepl.

The 1st arguement is what character string we’re searching for (‘Merc’ in our case), and the 2nd argument
is where we want R to search for that phrase (the row.names or name column in our case). This is cap
sensitive.

grepl('Merc', row.names(mtcars))

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
[12] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[23] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

mtcars[grepl('Merc', row.names(mtcars)),]

mpg cyl disp hp drat wt qsec vs am gear carb name
Merc 240D 24.4 4 146.7 62 3.69 3.19 20.0 1 0 4 2 Merc 240D
Merc 230 22.8 4 140.8 95 3.92 3.15 22.9 1 0 4 2 Merc 230

3

Merc 280 19.2 6 167.6 123 3.92 3.44 18.3 1 0 4 4 Merc 280
Merc 280C 17.8 6 167.6 123 3.92 3.44 18.9 1 0 4 4 Merc 280C
Merc 450SE 16.4 8 275.8 180 3.07 4.07 17.4 0 0 3 3 Merc 450SE
Merc 450SL 17.3 8 275.8 180 3.07 3.73 17.6 0 0 3 3 Merc 450SL
Merc 450SLC 15.2 8 275.8 180 3.07 3.78 18.0 0 0 3 3 Merc 450SLC

Now we can just add this to our previous subset

final <- subset(mtcars, wt<4 & (cyl==4|cyl==6) & mpg >=20 & grepl('Merc', row.names(mtcars)))
final[which.max(final$hp),]

mpg cyl disp hp drat wt qsec vs am gear carb name
Merc 230 22.8 4 140.8 95 3.92 3.15 22.9 1 0 4 2 Merc 230

And our answer is the Mercedes 230! Price is clearly not part of my criteria

Notice we have used all logic statements that give us T/ F, if we’ve statements that gave us positions we
couldn’t mix them with T/F logical statments

Hard

Part 1. Say we have a 10 x 10 gridded wetland. In each cell we’ve measured two habitat characteristics water
height and percent cover of grasses. We want to characterize each cell as a pond, mudflat, wetland, wet field,
or upland based on our two measurements and put this into one categorical column called ‘HabitatType’.

• pond = water height > 90mm and percent cover of grass<= 0.5

• mudflat = water height <= 90mm and percent cover of grass <= 0.5

• wetland = water height > 50mm and percent cover of grass > 0.5

• wetfield = water height <= 50mm and percent cover of grass > 0.5

• upland = water height <= .1 and percent cover of grass > 0.50

• bare = water height <=.1 and percent cover of grass <0.5

Heres your data set:

data <- data.frame(
lat=rep(seq(30,30.9,.1),each=10),
long=rep(seq(100,100.9,.1), by=10),
water = sample(seq(1,120,.1), 100, replace=T),
PerCover = sample(seq(.3,1,.1), 100, replace=T))

head(data)

4

lat long water PerCover
1 30 100.0 31.1 0.6
2 30 100.1 9.9 1.0
3 30 100.2 21.3 0.3
4 30 100.3 89.2 1.0
5 30 100.4 36.7 0.7
6 30 100.5 62.2 0.5

Solution

This can be done in only a few steps, or a longer serious of convuluded middle steps

data$HabitatType <- NA

data$HabitatType[data$water>90 & data$PerCover<=0.50] <- "pond"
data$HabitatType[data$water<=90 & data$PerCover<=0.50] <- "mudflat"
data$HabitatType[data$water>50 & data$PerCover>0.50] <- "wetland"
data$HabitatType[data$water<=50 & data$PerCover>0.50] <- "wetfield"
data$HabitatType[data$water<=10 & data$PerCover>0.50] <- "upland"
data$HabitatType[data$water<=10 & data$PerCover<=0.50] <- "bare"
head(data)

lat long water PerCover HabitatType
1 30 100.0 31.1 0.6 wetfield
2 30 100.1 9.9 1.0 upland
3 30 100.2 21.3 0.3 mudflat
4 30 100.3 89.2 1.0 wetland
5 30 100.4 36.7 0.7 wetfield
6 30 100.5 62.2 0.5 mudflat

Here the important thing to note is if you create the column before hand and fill it with NAs then we can
use subsetting to tell it where to put in the correct values. This doesn’t work if this column has never been
created.

Bonus 1. (Very Hard) During my field work I noticed that wetlands tend to occur next to other wetlands.
I want to figure out how many of my wetland cells have atleast 1 neighbor that is also a wetland (This is a
loose measure of contagion in landscape ecology).

Count neighbors as only their north/south/east/west neighbor (4 neighbor rule). Assume anything outside
our study area is a 0.

Hint - In this instance you’ll have to make a 10x10 matrix with latitude as rows, columns as longitude and
wetland is coded as 1 or 0.

Solution This solution just represents what I came up with, I think you can do this many different ways
and I’d love to see other ways people did it. Let first make our matrix. Now I’ve decided to go the easy route
here, and assume that I know how R is going to fill the matrix in. This is because to R a matrix is just one
long vector, but with defined dimensions. So if we tell it the matrix should be 10 x 10 then it will lay the
first 10 entries down in the first column, 2nd 10 entries in the 2nd column and so on. So we sort first and
then just give the column to our matrix.

You’ll notice we can give it the dimension names using the ‘dimnames’ argument and then supply it a list
where the first entry is the row names and second is the column. This is useful, but for the solution I chose

5

later we have to leave this out (you’ll see why). So I show it to you now, but then overwrite it without dim
names.

data$wetland<-0
data$wetland[data$HabitatType=='wetland']<-1
data2<-data[,c('lat','long','wetland')]
data2<-data2[order(-data2$lat, data2$long),]

##this is typically what we'd do
spatial<-matrix(data2$wetland, 10, 10, dimnames=list(unique(data2$lat),unique(data2$long)))
spatial

100 100.1 100.2 100.3 100.4 100.5 100.6 100.7 100.8 100.9
30.9 0 1 1 0 0 1 0 0 0 0
30.8 1 1 1 0 1 0 0 0 1 0
30.7 0 0 0 0 0 1 1 0 0 0
30.6 1 0 1 0 0 0 1 1 0 1
30.5 1 0 1 1 1 0 0 0 0 0
30.4 1 1 0 0 0 0 0 0 0 0
30.3 0 0 0 1 0 1 0 1 1 1
30.2 1 1 0 0 1 0 0 1 0 0
30.1 1 0 0 0 0 1 1 1 1 0
30 1 0 0 0 1 1 1 1 1 0

##but for the next analysis we're going to do this, just trust me the rows and columns are correct
spatial<-matrix(data2$wetland, 10, 10)

This isn’t necessarily the only way to make this into a 10X10 matrix, but it sure as heck is the easiest.

Now we need to calculate for each point whether it’s 4 neighbors are also wetlands. Many of you were probably
thinking of using a for loop, and I do think you can in this situation. That loop won’t scale particularly well,
and you still will have to create very specific control structures for when its the 1st row, 1st column, last row,
or last column. The solution I came up with is completely vectorized. Basically if you shift the matrix one
column over, then our east neighbor is now where our original points were. Say we only wanted to figure out
if the east neighbor was a wetland, we could artificially shift it one column over, and ask R if that value is 1
or 0.

Compare these two matrices

east<-cbind(spatial[,2:10], rep(0,10))
spatial

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 1 1 0 0 1 0 0 0 0
[2,] 1 1 1 0 1 0 0 0 1 0
[3,] 0 0 0 0 0 1 1 0 0 0
[4,] 1 0 1 0 0 0 1 1 0 1
[5,] 1 0 1 1 1 0 0 0 0 0
[6,] 1 1 0 0 0 0 0 0 0 0
[7,] 0 0 0 1 0 1 0 1 1 1
[8,] 1 1 0 0 1 0 0 1 0 0
[9,] 1 0 0 0 0 1 1 1 1 0
[10,] 1 0 0 0 1 1 1 1 1 0

6

east

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 1 0 0 1 0 0 0 0 0
[2,] 1 1 0 1 0 0 0 1 0 0
[3,] 0 0 0 0 1 1 0 0 0 0
[4,] 0 1 0 0 0 1 1 0 1 0
[5,] 0 1 1 1 0 0 0 0 0 0
[6,] 1 0 0 0 0 0 0 0 0 0
[7,] 0 0 1 0 1 0 1 1 1 0
[8,] 1 0 0 1 0 0 1 0 0 0
[9,] 0 0 0 0 1 1 1 1 0 0
[10,] 0 0 0 1 1 1 1 1 0 0

The east matrix is just the spatial dataframe shifted 1 column over (with 0’s replacing the 10th column). If
we ask R whether our dataframes neighbor to the right has a 1 in it. Does this not give us the answer?

east==1

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[2,] TRUE TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
[3,] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE
[4,] FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE
[5,] FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[6,] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[7,] FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE
[8,] TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE
[9,] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE
[10,] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE

spatial

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 1 1 0 0 1 0 0 0 0
[2,] 1 1 1 0 1 0 0 0 1 0
[3,] 0 0 0 0 0 1 1 0 0 0
[4,] 1 0 1 0 0 0 1 1 0 1
[5,] 1 0 1 1 1 0 0 0 0 0
[6,] 1 1 0 0 0 0 0 0 0 0
[7,] 0 0 0 1 0 1 0 1 1 1
[8,] 1 1 0 0 1 0 0 1 0 0
[9,] 1 0 0 0 0 1 1 1 1 0
[10,] 1 0 0 0 1 1 1 1 1 0

If you accept that, then you can do that for all 4 neighbors, add them up, and then see how many neighbors
does each point have that has a 1

east<-cbind(spatial[,2:10], rep(0,10))
west<-cbind(rep(0,10),spatial[,1:9])
north<-rbind(rep(0,10), spatial[1:9,])
south<-rbind(spatial[2:10,], rep(0,10))
add<-east+west+north+south
add

7

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 2 2 2 1 2 0 1 0 1 0
[2,] 1 3 2 2 0 3 1 1 0 1
[3,] 2 1 2 0 2 1 2 2 1 1
[4,] 1 2 1 2 1 2 2 1 2 0
[5,] 2 3 2 2 1 1 1 1 0 1
[6,] 2 1 2 2 1 1 0 1 1 1
[7,] 2 2 1 0 3 0 2 2 2 1
[8,] 2 1 1 2 0 3 2 2 3 1
[9,] 2 2 0 0 3 2 3 4 2 1
[10,] 1 1 0 1 1 3 3 3 2 1

spatial

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 1 1 0 0 1 0 0 0 0
[2,] 1 1 1 0 1 0 0 0 1 0
[3,] 0 0 0 0 0 1 1 0 0 0
[4,] 1 0 1 0 0 0 1 1 0 1
[5,] 1 0 1 1 1 0 0 0 0 0
[6,] 1 1 0 0 0 0 0 0 0 0
[7,] 0 0 0 1 0 1 0 1 1 1
[8,] 1 1 0 0 1 0 0 1 0 0
[9,] 1 0 0 0 0 1 1 1 1 0
[10,] 1 0 0 0 1 1 1 1 1 0

And we see it does work. So now we just have to do the trivial matter of counting up how many of these cells
are wetlands and have neighbors that are wetlands. Which is only trivial if youve gotten this far.

sum((add>0 & spatial>0))/(sum(spatial>0))

[1] 0.8292683

If you remember we decided not to give our matrix dimension names, the reason is, when you add up all of
the shifted dataframe R attempts to add the like named columns and rows, and so the result is and 11x11
matrix with an unnamed row and unnamed column. I currently don’t know how to fix this, but I assume it’s
an easy fix.

Bonus 2. (INSANITY) THE COORDINATES ARE POLAR COORDINATES!

data1 <- data.frame(
range = rep(seq(1,10,1), each=10),
azimuth = rep(seq(0,350, 36), by=10),
water = sample(seq(1,120,.1), 100, replace=T),
PerCover = sample(seq(.3,1,.1), 100, replace=T))

head(data1)

range azimuth water PerCover
1 1 0 30.2 0.7
2 1 36 82.8 1.0

8

3 1 72 118.4 0.4
4 1 108 97.1 0.4
5 1 144 69.5 0.9
6 1 180 94.1 0.9

Solution The only reason this one is rated insanity but not the previous question, is because I expected
polar coordinates to freak people out. If you’ve figured out the last problem, however, then this problem
shouldn’t be harder. The only thing you have to remember is that 1st column and 10th column are actually
next to each other because it’s a grided circle. I’m really just going to do the same anaylsis as before
but instead of giving it a phantom set of 0’s, I can fill it in with values from the opposite column. notice,
the rows don’t change since this isn’t some sort of crazy quad polar coordinate system or
something.

This first step isn’t important, if you wanted you could just copy ‘range’ and ‘azimuth’ into the spot of lat
and long for quickness.

data1$HabitatType <- NA
data1$HabitatType[data1$water>90 & data1$PerCover<=0.50] <- "pond"
data1$HabitatType[data1$water<=90 & data1$PerCover<=0.50] <- "mudflat"
data1$HabitatType[data1$water>50 & data1$PerCover>0.50] <- "wetland"
data1$HabitatType[data1$water<=50 & data1$PerCover>0.50] <- "wetfield"
data1$HabitatType[data1$water<=10 & data1$PerCover>0.50] <- "upland"
data1$HabitatType[data1$water<=10 & data1$PerCover<=0.50] <- "bare"

data1$wetland<-0
data1$wetland[data1$HabitatType=='wetland']<-1
data2<-data1[,c('range','azimuth','wetland')]
data2<-data2[order(data2$azimuth, data2$range),]

spatial<-matrix(data2$wetland, 10, 10)

##here is where we add in the opposite column as opposed to zeros.
east<-cbind(spatial[,2:10], spatial[,1])
west<-cbind(spatial[,10],spatial[,1:9])
north<-rbind(rep(0,10), spatial[1:9,])
south<-rbind(spatial[2:10,], rep(0,10))
add<-east+west+north+south

sum((add>0 & spatial>0))/(sum(spatial>0))

[1] 0.8780488

I don’t know why you’d actually set this experiment up in a polar grid, but you do find polar grids in remoting
sensing and meterology, so its good to understand.

9

	Easy
	Solution

	Medium
	Solution
	Hard
	Solution

